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others may be allowed to vibrate independently. The T and 
e~ tensors of the several rigid units are refined directly, as 
in Pawley's method, along with the usual coordinates, 
occupancy factors, etc. Experience suggests that this one- 
stage procedure may be highly advantageous, especially in 
rate of convergence, provided the molecules are sufficiently 
rigid and the f curves used (for X-ray data) represent the 
stationary-atom electron densities to the required accuracy. 
When these conditions are not  met, the two-stage proced- 
ure, or a comparison of the two, may help to reveal in- 
adequacies of the model, due to internal vibrations, charge 
polarization, altered hybridization, etc., more readily than 
extensive difference syntheses. 

The tensor formulation is also useful for evaluation of 
the libration corrections to the atomic coordinates. Assum- 
ing for simplicity that our refinement procedure has located 
the centroids of the atomic peaks rather than their maxima 
(either assumption is an approximation requiring justific- 
ation in particular circumstances), we may, for the present 
argument, disregard the factor D(a(o) in Cruickshank's 
(1961) equation (6) and obtain from his equations (10) the 
matrix equation for the coordinate shifts, in an orthonormal 
system, 

- [qeue v] = ½{t [;tUv] - [2/zv][~] }, 

where t is the trace of [co]. The tensor analog of this equ- 
ation, valid in any coordinate system, gives the corrected 
atomic coordinates 

2 ~ - ~ = ( 1 + ½t)2k _ ½~o~. 

Here, 2 k are the uncorrected coordinates, measured from 
the center of libration; the mixed covariant-contravariant 
components of m may be evaluated as 

o~' = couG Jk , 

where the matrix [GJ k] is inverse to [Gu]; and the trace 

t=27 coti 
i 

is invariant under all coordinate transformations. 
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In this paper a table of symmetry restrictions on aniso- 
tropic temperature factor parameters for all special posi- 
tions of the 230 space groups is presented. The text explains 
the table and describes the computer program which was 
used to derive it. The relationships between the various re- 
stricted forms are displayed diagrammatically. No recom- 
mendations for the method of programming these restric- 
tions in least-squares refinement are included. 
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Fig. 1. Symmetry-imposed t-restrictions for all special positions. 

The anisotropic atomic temperature factor may be defin- 
3 3 

ed as exp [ -  ( 27 27 h~hjPu)]. The Pu are the 9 contravariant 
i = l j = l  

components of a symmetric second-order tensor (Levy, 
1956), while h, is the i th  index of a reflexion hkl. Terms with 
i -¢:j may be combined two by two: h,hjflu + hjh,flj, = 2h,hjflu, 

Table 1. The 18 p-restrictions that occur when only the first 
atom o f  an equivalent set given by Vol. I o f  International 

Tables is considered 
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Table 2. Nature of the #-restrictions for all space groups and for every special position indicated by means of Table 1 

SPGR A B C D E F G H l J K L M N 0 
I 
2 
3 2 2 2 2 
3 1 1 1 1 
4 
4 

1 ! 
6 2 2 
6 1 ! 
7 
7 
8 2 
8 1 
9 
9 

l o  2 2 2 2 2 2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 1 I 1 1o 

11 2 
11 1 
12 2 2 2 2 2 2 2 
12 1 I 1 1 1 1 1 
13 2 2 
13 1 I 
14 
14 
15 2 
15 l 

16 4 4 4 4 4 4 4 4 3 3 3 3 1 I 1 
P ~ R S T 
1 2 2 2 2 

17 3 3 1 1 
18 2 2 
19 
20 3 1 
21 4 4 4 4 3 3 1 1 2 2 2 
22 4 4 4 4 3 1 2 2 I 3 
23 4 4 4 4 3 3 1 1 2 2 
24 3 1 2 
25 4 4 4 4 1 1 3 3 
26 3 3 
27 2 2 2 2 
28 2 2 3 
29 
30 2 2 
31 3 
32 2 2 
33 
34 2 2 
35 4 4 2 1 3 
36 3 
37 2 2 2 
38 4 4 1 3 3 
39 2 2 1 
40 2 3 
4 t  2 
42 4 2 3 1 
43 2 
44 4 4 1 3 
45 2 2 
46 2 3 
47 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 

P Q R S T U V W X 
4 4 4 4 4 3 3 1 t 2 2 

48 4 4 4 4 3 3 l 1 2 2 
49 2 2 2 2 4 4 4 4 3 3 1 1 2 2 2 

P <3 
2 2 

50 4 4 4 4 3 3 l 1 2 2 
51 1 l I 1 4 4 I 1 1 1 3 
52 2 3 
53 3 3 3 3 3 3 1 3 
54 I 2 2 
55 2 2 2 2 2 2 2 2 
56 2 2 
57 3 2 
58 2 2 2 2 2 2 2 
59 4 4 3 1 
60 1 
61 
62 1 
63 3 3 4 3 3 2 
64 3 3 3 1 3 
65 4 • 4 4 2 2 4 4 4 4 4 4 2 3 1 

P Q 
2 2 

66 4 4 2 2 2 2 3 1 2 2 2 2 

6"/ 4 4 3 3 1 1 4 3 3 1 l 2 3 I 

68 4 4 3 1 2 2 
69 4 4 3 1 2 4 4 4 4 2 I 3 3 1 2 
70 4 4 3 1 2 
11 4 4 "4 4 4 4 4 4 4 4 3 1 2 

2 2 2 72  4 4 2 2 3 1 
13 3 I 2 
74 3 3 1 Z 4 3 ~. 3 z 

15 8 8 2 
T6 
77 2 2 2 
78 
79 8 2 
80 2 
81 8 8 8 8 2 2 2 
82 8 8 8 8 2 2 
83 8 8 8 8 2 2 8 8 2 2 2 

8 8 2 2 2 2 B4 2 2 2 2 
85 8 8 8 2 
86 8 8 2 2 
87 8 8 2 8 8 2 2 
88 8 8 2 
89 8 8 8 8 4 4 8 8 2 ? 7 3 3 3 3 
90 5 p 8 2 7 7 

SPGR A B C D E F G H I J K L ~ N 0 
91 I I 7 
92 7 
9 3  4 4 4 ~ 5 2 2 2 3 3 3 3 7 7 
94 5 5 2 2 7 
95 1 1 7 
96 7 
97 8 8 4 5 ~ 2 7 3 3 7 
98 ~ 5 2 7 3 
99 8 4 6 ! 1 

1oo B ~ 6 
1 o l  5 2 6 
102 5 2 6 
1o3 8 8 2 
104 8 2 
1o5 4 4 4 1 I 
lo6 2 2 
1o7 B 4 ~ 1 
l o 8  8 5 
lo9  4 3 
11o 2 
111 8 8 8 8 4 ~ 53 5 3 3 3 3 2 6 
112 ~ 4 4 4 8 1 3 1 2 2 2 

113 8 52 2 6 
114 8 8 2 
115 8 8 ~ 8 4 4 4 ~ 72 1 1 
116 5 5 8 7 7 2 
117 8 8 5 5 2 ~ 7 7 
118 8 8 ~ 85 2 7 
119 8 ~ 4 4 7 ~ 1 
12o 5 8 ~ 7 2 2 
121 8 8 4 S 3 3 2 6 
122 8 8 2 3 
123 P 8 ~ 8 8 4 4 8 8 4 5 5 4 R S 4 4 4  

2 ~ 6 I I 
124 8 8 8 2 4 ~ 8 2 ~ 3 3 2 
125 8 ~ 8 8 7 7 5 7 3 3 7 
126 ~ 4 8 8 2 7 3 3 
127 8 52 ~ 8 ~ ~ 5 2 2 6 
128 8 8 8 2 
129 8 8 8 6 6 ~ 6 6 3 6 
13o ~ 8 8 2 
131 P ~ 4 4 8 8 4 4 4 4 4 4 4 7 3 

3 2 
132 5 8 ~ 8 4 2 5 5 53 5 2 3 3 2 6 
133 4 4 8 2 2 3 7 
134 8 8 4 5 72 7 ~ 2 3 3 7 7 7 
13~ 2 8 2 5 2 2 
136 5 8 5 2 8 5 5 5 3 3  2 2 6  
137 8 46 4 6 

6 6 6 138 5 8 ~ 2 6 
139 8 8 4 8 6 4 5 4 4 72 2 6 3 
14o 8 8 8 5 ~ 8 5 5 7 3 6 
141 8 8 3 3 3 7 3 
142 8 5 2 3 7 

143 16 16 16 
144 
145 
146 18 
146 16 
147 t 6  16 16 t 6  
148 18 18 18 
148 16 16 16 
149 16 16 16 16 16 16 16 16 16 6 6 
15o 16 16 16 16 15 15 
151 6 6 
152 15 15 
153 6 6 
154 15 15 
155 18 18 18 1o I o  
155 16 16 16 15 15 
156 16 16 16 7 
157 16 16 13 
158 16 16 16 
159 16 16 
16o 18 6 
16o 16 7 
161 18 
t61  16 
162 16 16 16 16 16 13 13 16 6 6 13 
163 16 16 16 16 16 16 6 
164 16 6 16 16 15 15 15 15 7 
165 16 ~ 1~ 16 1~ 
166 18 1 1o 1o 6 6 
166 16 6 16 15 15 15 15 7 
167 18 8 18 6 
167 16 6 16 15 

168 16 6 2 
169 
17o 
171 2 2 
172 2 2 
173 16 16 
174 16 16 16 16 16 16 16 16 16 2 2 
175 16 16 16 16 16 2 2 16 2 2 2 
176 1~ 16 1~ 1~ 16 16 2 
177 1 16 1 1 16 14 14 16 2 15 15 6 6 
178 15 13 
179 145 13 
18o ! 14 14 14 2 2 1 5  1 5  13 13 
181 14 14 14 14 2 2 15 15 13 13 
182" 16 16 16 16 16 16 15 13 
183 16 16 14 13 7 
184 16 16 2 
185 16 z6 13 
186 16 1~ ~ 
187 16 1 1 16 16 16 16 16 16 5 5 2 2 7 
188 16 16 16 16 16 16 16 16 16 6 2 
189 16 16 16 16 16 14 14 16 13 2 2 
19o 16 16 16 16 16 16 15 2 
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SPGR A B 
191 16 I 

P Q 
2 2 

z§2 16 16 
19~ 16 16 
19 16 16 

1965 17 17 
19 17 17 
197 17 4 
198 18 
199 I 8 3 
2oo 17 17 
2oi 17 18 
202 17 17 
203 17 17  
2o4 I 7 4 
2o5 I 8 1 8 
206 18 18 
207 17 17 
208 17 18 
2o9 I 7 I 7 

Table 2 
~ ~ ~ F , ~ . ,  ~ ~ ~ ~, ~ o 

I 1 1 14 1 16 14 14 14 14, I , (  13 15 

16 16 16 14 2 16 2 15 13 
16 1~ 1~ 13  14 l ~  . . . .  3 
16 1 I 16 15 1 15 2 15 

4 4 18 3 3 3 3 
17 17 18 3 3 
18 3 3 

4 4 4 4 4 4 18 3 3 
18 4 18 3 3 
17 3 4 18 3 3 
18 18 18 3 
18 4 4 18 3 
18 
18 3 
12 12 12 12 18 3 11 11 
18 4 9 9 18 3 3 3 l o  I1  
17 9 12 18 II 11 3 

(cont.) 
5PGR 
21o 
211 
212 
213  
214 
215 
216 
21 7 
218 
219 
220 
221 
222 
223  
224 
225 
226 
227 
228 
229 
23o 

A B C zD l~ F i G H I 
7 7 I 3 o 
7 2 18 9 12 18 3 11 1o 
8 8 18 1o 
8 8 18 11 
8 8 9 9 18 3 11 1o 
7 7 12 12 18 9 9 3 6 
7 7 17 17 18 9 9 6 
7 2 18 12 9 3 6 
7 4 12 12 18 3 3 3 

7 17 12 12 12 12 18 4 9 9 
7 12  18 12 12 18 3 11 

4 12 12 18 4 4 4 18 11 
8 18 12 18 9 9 3 l o  11 

7 ~ 1 7  9 1 2 1 8  9 9 9 3  
7 12 12 4 12 I I1  3 

18 12 18 ~ o 
2 18 12 12 18 4 9 1o 3 
8 9 12 18 3 l o  

d K L ~I N 0 

reducing the number of terms in the exponent from 9 to 6 
and introducing the explicit factor 2. 

For an anisotropic atom in a special position both posi- 
tion and (if the point symmetry is higher than I) orientation 
of the ellipsoidal atomic charge distribution are constrained 
by symmetry, resulting in a decrease of the number of inde- 
pendent parameters from 3 to either 2, 1 or 0 for its position 
and from 6 to either 4, 3, 2 or 1 for its vibration tensor. It 
is well known that the decreased number of independent 
variables may lead to singular matrices in the least-squares 
normal equations, and to erroneous parameter shifts, if no 
special measures are taken. 

In order to determine the extent of such measures the 
present paper states the number and nature of the symmetry- 
imposed restrictions on the values of the B,J for all special 
positions (Fig. 1). We will refer to such restrictions as B- 
restrictions. In addition we have produced Tables 1 and 2, 
which allow a rapid identification of the B-restrictions for 
any special position in the 230 space groups, analogous to 
the coordinate information of International Tables for X-ray 
Crystallography (1952). 

B-Restrictions occur only when an atomic position is 
invariant to the operation of one or more proper or impro- 
per rotation axes (barring i). An investigation of the num- 
ber and nature of the B-restrictions therefore reduces to a 
point symmetry problem, and it suffices to study only 
m3m and 6/mmm, of which all other point groups are sub- 
groups. 

Furthermore, a representation of atomic vibration by the 
second-order tensor ,8 implies that the atomic symmetry is 
one of the following: 
(a) A sphere (symmetry ~ oo oo) in positions of symmetry 

23 and its supergroups, 
(b) An ellipsoid of revolution (symmetry ~/m) in positions 

of symmetry 3, 4, ~ and 'non-cubic' supergroups, 
(c) A general ellipsoid. In special positions with point sym- 

metry 222 or its 'or thorhombic '  supergroups the orien- 
tation of all three principal axes of vibration with res- 
pect to the crystallographic axes will be fixed by sym- 
metry; in positions of symmetry 2 (or m) or its super- 
group 2/m the orientation of only one principal vibra- 
tion axis is fixed by point symmetry. 

It follows from these considerations that the number of 
B-restrictions is the number of orientations with respect to 
the crystallographic axes in which the groups of symmetry 
elements 23, 4, 3, 222 and 2 are present as subgroups in the 
point groups m3m and 6/mmm. (~ need not be investigated, 
as its orientation with reference to the axes is obviously the 
same as that of 4 in all cases; an analogous situation exists 
with respect to m: all B-restrictions caused by a mirror plane 

also occur as a result of a twofold axis perpendicular to the 
plane, which is always present as subgroup in the required 
orientation in both m3m and 6/mmm). Reasoning along these 
lines 28 cases of B-restrictions are found to exist. They are 
displayed in Fig. 1. The six symbols on one line in the boxes 
represent fill, B22, B33, 2812, 2B23, 2.813, respectively. A dash 
indicates an unrestricted component;  identical components 
are represented by symbols A or B occurring more than once 
on the same line, etc. All symmetry-equivalent cases of ,8- 
restrictions are grouped in one box, the symmetry of the 
special position in question being stated at the right side 
of Fig. 1. The solid lines connecting the boxes indicate how, 
when starting with a spherical atom in a position of sym- 
metry m3m (top left) and an ellipsoid of revolution of sym- 
metry 6/mmm (top right), all other cases orB-restrictions can 
be produced by a relaxation of symmetry demands. Iden- 
tical B-restrictions occurring twice in this process are con- 
nected by chain-dotted lines. The numbers preceding the 
boxes refer to Tables 1 and 2. 

Table 1 contains the 18 cases of B-restrictions that occur 
when only the first atom given by Vol. I of International 
Tables for a certain special position is considered. Table 2 
presents, for all space groups (top to bottom in a column), 
and for every special position (left to right) of point sym- 
metry higher than I an integer, which, by means of Table 1, 
indicates the nature of the B-restriction for the first atom 
of the equivalent set. All monoclinic space groups are en- 
tered twice: the first entry refers to the first setting (c axis 
unique); the second to the setting with the b axis as the 
unique axis. Similarly rhombohedral  space groups occur 
twice: first with a rhombohedral  unit cell, then with the 
alternative choice of hexagonal axes. Tetragonal and cubic 
space groups have all been processed with such a choice of 
unit cell as to have the origin on a centre of symmetry. 

The (electronic) computation of this table proceeded as 
follows: 

Space group information consisting of the multiplicity 
(M) and the coded coordinates of the equivalent general po- 
sitions were fed into the machine. All symmetry-equivalent 
positions x8 were generated by the operation of a 3 × 3 
rotation matrix R on a position x, followed by the addition 
of a translation vector t,: 

x ,  = Rs x  + t ,  (1)  

(cf. Cruickshank, 1961), and subsequently all (M) matrices 
R, and vectors t8 were assembled. Next all R8 and ts oper- 
ated upon the coordinates of the first atom of a special 
position of multiplicity m. Naturally, of the M general 
positions thus generated, M/m coincided with the first atom, 
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and in this way the M/m transformations that left the special 
position invariant could be identified. 

Now the /h i  (constituting a second-order tensor) trans- 
form as follows: 

3 3 
fl~= ~r ~, R~kRjzfl~t, (2) 

k = l  I=1 

the matrices R being identical with those in (1). An arbitrary 
symmetric tensor/? was subsequently subjected to the M/m 
transformations (2), employing the M/m matrices R that 
left the atomic position invariant. The invariant tensor/~l,,,, 
that displays the desired//-restrictions was then constructed 
by an application of Wigner's theorem (Wigner, 1931): 

M / m  
6ol~v)~j = s (/~;)~j, (3) 

s = l  

stating that the invariant tensor can be obtained by a simple 
summation over the corresponding elements of the sym- 

metry-equivalent, arbitrary tensors of the coinciding atoms*. 
Finally the nature of the invariant tensor was analyzed by 
a comparison with the 18 tensors of Table 1, a built-in check 
insuring that no other cases presented themselves. 
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The face-centred cubic structure [Fig. 1 (a)] may contain var- 
ious types of faults in stacking of the close-packed atomic 
layers (111). In Fig. l(b), (c), and (d) three examples of such 
stacking faults are illustrated: the 'single (or intrinsic) fault', 
the 'double (or extrinsic) fault', and the 'triple fault ' .  The 
diffraction theories of the first two were given by Paterson 
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Fig. 1. (a) The unit-layer stacking in the face-centred cubic 
structure. (b), (c), and (d) contain a single fault, a double 
fault, and a triple fault, respectively. The horizontal lines are 
the sections of the unit-layers. 

(1952) and by Johnson (1963) and Warren (1963), respective- 
ly. The last  one is dealt with in the present paper. 
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Fig. 2. (a) The function E for h - k = 1 mod 3 for various values 
of f. The curves for h - k = -  1 mod 3 are obtained by re- 
placing I by - l. (b) Change in peak position of E in (a) as a 
function off .  ~0=360 ° x I. 


