others may be allowed to vibrate independently. The \mathbf{T} and ω tensors of the several rigid units are refined directly, as in Pawley's method, along with the usual coordinates, occupancy factors, etc. Experience suggests that this onestage procedure may be highly advantageous, especially in rate of convergence, provided the molecules are sufficiently rigid and the f curves used (for X-ray data) represent the stationary-atom electron densities to the required accuracy. When these conditions are not met, the two-stage procedure, or a comparison of the two, may help to reveal inadequacies of the model, due to internal vibrations, charge polarization, altered hybridization, etc., more readily than extensive difference syntheses.

The tensor formulation is also useful for evaluation of the libration corrections to the atomic coordinates. Assuming for simplicity that our refinement procedure has located the centroids of the atomic peaks rather than their maxima (either assumption is an approximation requiring justification in particular circumstances), we may, for the present argument, disregard the factor $D(a \varphi)$ in Cruickshank's (1961) equation (6) and obtain from his equations (10) the matrix equation for the coordinate shifts, in an orthonormal system,

$$
-\left[\varepsilon_{\lambda} \varepsilon_{\mu} \varepsilon_{\nu}\right]=\frac{1}{2}\{t[\lambda \mu \nu]-[\lambda \mu \nu][\omega]\},
$$

where t is the trace of $[\omega]$. The tensor analog of this equation, valid in any coordinate system, gives the corrected atomic coordinates

$$
\lambda^{k}-\varepsilon^{k}=\left(1+\frac{1}{2} t\right) \lambda^{k}-\frac{1}{2} \lambda^{k} \omega_{l}^{k} .
$$

Here, λ^{k} are the uncorrected coordinates, measured from the center of libration; the mixed covariant-contravariant components of ω may be evaluated as

$$
\omega_{i}^{k}=\omega_{i j} G^{j k},
$$

where the matrix [$\left.G^{j k}\right]$ is inverse to $\left[G_{i j}\right]$; and the trace

$$
t=\sum_{i} \omega_{i}^{i}
$$

is invariant under all coordinate transformations.

References

Cruickshank, D. W. J. (1956a). Acta Cryst. 9, 747.
Cruickshank, D. W. J. (1956b). Acta Cryst. 9, 754.
Cruickshank, D. W. J. (1961). Acta Cryst. 14, 896.
Patterson, A. L. (1959). International Tables for X-ray Crystallography. Vol. II, p. 54. Birmingham: Kynoch Press.
Pawley, G. S. (1964). Acta Cryst. 17, 457.

Acta Cryst. (1966). 20, 147
The anisotropic temperature factor of atoms in special positions. By W. J. A. M. Peterse and J. H. Palm, Laboratorium voor Technische Natuurkunde, Technische Hogeschool, Lorentzweg 1, Delft, The Netherlands
(Received 3 April 1965 and in revised form 20 September 1965)

In this paper a table of symmetry restrictions on anisotropic temperature factor parameters for all special positions of the 230 space groups is presented. The text explains the table and describes the computer program which was used to derive it. The relationships between the various restricted forms are displayed diagrammatically. No recommendations for the method of programming these restrictions in least-squares refinement are included.

Fig. 1. Symmetry-imposed β-restrictions for all special positions.

The anisotropic atomic temperature factor may be defined as $\exp \left[-\left(\sum_{i=1}^{3} \sum_{j=1}^{3} h_{i} h_{j} \beta_{i j}\right)\right]$. The $\beta_{i j}$ are the 9 contravariant components of a symmetric second-order tensor (Levy, 1956), while h_{i} is the i th index of a reflexion $h k l$. Terms with $i \neq j$ may be combined two by two: $h_{i} h_{j} \beta_{i j}+h_{j} h_{i} \beta_{j i}=2 h_{i} h_{j} \beta_{i j}$,

Table 1. The 18β-restrictions that occur when only the first atom of an equivalent set given by Vol.I of International Tables is considered

Table 2. Nature of the β-restrictions for all space groups and for every special position indicated by means of Table 1

SPGR	A	B	C	D	E	E	F	G	H	1		J	K	L	M		*	-	SPGR	A	B	C	D	E	F	G	H	1	J	k		M	N	0
1																			$\begin{aligned} & 91 \\ & 92 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	1	7												
2			2																93	4	4	4	4	5	5	2	2	2	3	3	3	3	7	7
3 3	2	2	2	${ }_{1}^{2}$															94		5	2	2	7	7									
4																			95	1		7												
4	2	2																	97	8	8	4	5	8	2	7	3	3	7					
5	2	1																	98	5	5	2	7	6	3									
6	2	2																	99 100	8	8	6	6	1	:									
6	1	1																	101	5	5	2	6											
?																			102	5	2	6												
8	2																		103	8	8	2												
8	1																		10	4	4	4	1	!										
9																			106	2	2													
10	2	2	2	2	2	2	2	2	2	2		2	2	2		2	2		107	8	4	6	1											
10	1	1	1	1	1	1	1	1	1	1		1	1	1		1	1		108	8	5	6												
11						2													109	2														
11			2		2	1		2	2										111	8	8	8	8	4	4	5	5	3	3	3	3	2	6	
12	2	${ }_{1}^{2}$	${ }_{1}$	1	1			1	1	1									112	4	4	4	4	8	8	3	1	3	1	2	2	2		
13						2	2												113	8	8	5	2	6										
13						1	1												115	8	8	8	8	4	4	4	7	7	1	1				
14																			116	5	5	8	8	7	7	2	2	2						
14																			117	8	8	5	5	2	2	7	7							
15						1													118	8	8	5	5	2	6	7	2							
15																			119	8	8	8	8	4	4	7	7	1						
16	4	4	4		4	4	4	4	4		3	3	3	3		1	1	1	120	5	8	8	${ }_{8}$	7	${ }_{3}^{2}$	${ }_{3}^{2}$	7	6						
	P	2	R		s	T													122	8	8	2	3											
17	1	2	2		$\stackrel{2}{1}$	2													123	8	8	8	8	4	4	8	8	4	5	5	4	4	4	4
18	2	2																		2	2	6	1	1										
19																			124	8	8	8	8	2	4	8	8	2	7	3	3	2		
20	3	1	1									2	2						125	8	8	8	8	7	7	8	5	7	7	3	3	7		
21	4	1	4	1	1	3		2	2		1	3							126	8		4	8			2	7	3	3					
22 23	4		4	1	4	3	3	1	1										127	8	8	5	5	8	5	5	5	2	2	6				
24	3	1	2	2															129	8	8	8	6	6	4	6	6	3	6					
25	4	4	4	4	4	1	1	3	3										130	5	8	8		2	,									
27	3	2		2	2														131	4	4	1	4	8	8	4	4	4	4	4	4	4	7	3
27 28	2	2	${ }_{3}$	3																P	Q													
29	2																			3	2	5	8	4	2	5	5	5	5	2	3	3	2	6
30	2	2																	133	4	4	5	8		2	2	3	3	7					
31	3^{3}																		134	8	8	4	5	7	7	5	2	3	3	7	7	7		
32	2	2																	135	2	8	2	5	2	2	7	2							
33	2																		136	5	5	2	8	5	5	5	2	2	6					
35	1	4			1	3													137	8	8	4	4		6	3								
35	+	4		2	1														138	5	8	6	6	5		6	6	6						
36	3																		139	8	8	4	8	8	6	4	5	4	4	7	2	6	3	
37 38	2	2	2	$\stackrel{2}{2}$	3	3													14.	8	8	8	5	7	8	5	5	7	3	2	6			
38 39	,	4	1	1	3	3													141	8	8	3	3	4	3	7	3							
39 40	2	${ }_{3}$		1															142	8	5		2	3	7									
41	2																		143	16	16	16												
42	4	2		3	1														144															
4	2	4		1	3														145															
45	4	2			3														146	18														
45 46	2	${ }_{3}$																	146	16														
47	4	4		4	4	T	U	4							4	4	4	4	147 148	16 18	18	18												
	P	Q		R	5	T	U	\checkmark			-	Y	2						148	16	16	16												
	4	4		1	4	4	3	3 3	1	1	1	$\stackrel{2}{1}$	2		2				149	16	16	16	16	16	16	16	16	16	6	6				
49	2	2		2	2	4	4	4	4		3	3	1			2	2	2	150	16	16	16												
	P	a																	151	15														
	2	2																	153	6	6													
50	4	4		4	4			3			1	1	${ }_{3}$		2				154	15	15													
51 52	1	1		1	1	4	4	1			1								155	18	18	18	10	10										
52 53	3	3		3	3	3	3	1		3									155	16	26	16	15	15										
54				1	2	2													156	16	16	$1{ }^{16}$												
55 56	2	2			2	2	2	2		2									158	16	16	16												
56 57				2	2														159	16	16													
58 58	2			2	2	2	2	2											160	18	6													
59	4	1				3	1												160	18 18	7													
60				1															161	16														
61 62																			162	16	16	16	16	16	13	13		6	6	13				
62 63	3			4		3	3	2											163 164 1	16	16	16	16	16 15	16 15	15	15	7						
64	3	3			3	1	3												165	16	16	16	16		15									
65	4			4	4	2	2	4		4	4	4	4		4	2	3	1	166	18	18	18	10	10	6	6	6							
	P																		166	16	16	16	15	15	15	15	7							
66	2	2		2	2	2	2	3		1	2	2	2		2				167	18	18	18		$\stackrel{6}{15}$										
67				3	3	1	1	1		3	3	1	1		2	3	1		167	16	16	15												
68	,					3	1	2		2					3	3	1		169															
69	1			3	1	2	4	1		4	4				3		1		170															
70	,			4	4	4	1	1		4	4	4			3	1	2		171	2	2													
72	4			2	2		3	1		2	2	2							172 173	$1{ }_{1}^{2}$	${ }_{1}^{2}$													
73				3	1	2													174	16	16	16	16	16	16	16	16	16	2	2				
74				1	1	4	3			3	. 1								175	16	$1{ }^{16}$	16	16	16	${ }_{1}^{2}$	2	${ }^{16}$	2	2					
				2															176	16	16	16	16 16	16 16	$1 \begin{aligned} & 16 \\ & 14\end{aligned}$	14	16	2	15	15	6	6		
76																			178	15	13													
77				2															179	15	13													
78																			180	14	14	14	14	2	2	15	15	13 13	13 13					
79																			181 182 182	14	14 16	14	14 16	${ }_{1}^{2}$	${ }_{16}^{2}$	15	15 13							
81				8		2	2												183	16	16	14	13	7										
82				8	8	2	2												184	16	16	2												
83				8	8	${ }_{8}^{2}$	${ }^{2}$,	8	${ }_{2}^{2}$	${ }_{2}$							185	16	16	13												
84 85				${ }_{8}^{2}$	2		8												186	16	16	16	16				16	16	5					
85 86		咗				2	2												187 188	16	16	16	16	16	16	16	16	16	6					
87		-		2	8	8			2	2									189	16	16	16	16	16	14	14	16	13	2					
88						2									3	3	3		19.	16	16	16	16	16	16	15	2							
99		5		8	2	7																												

Table 2 (cont.)

SPGR	A	B	C	D	E	F	G	H	1	J	K	L	N	N	0
21.	17	17	18	18	18	3	1.								
211	17	12	18	9	12	18	3	11	10						
212	18	18	18	10											
213	18	18	18	11											
214	18	18	9	9	18	3	11	10							
215	17	17	12	12	18	9	9	3	6						
216	17	17	17	17	18	9	9	6							
217	17	12	18	12	9	3	6								
218	17	4	12	12	18	3	3	3							
219	17	17	12	12	18	3	3								
220	12	12	18	3											
221	17	17	12	12	12	12	18	4	9	9	3	3	6		
222	17	12	18	12	12	18	3	11							
223	17	1	12	12	18	4	4	4	18	1:	3				
224	17	18	18	12	18	9	9	3	10	11	1				
225	17	17	17	9	12	18	9	9	9	3	6				
226	17	17	12	12	4	12	18	11	3						
227	17	17	18	18	18	9	h	10							
228	17	18	18	12	18	3	10								
229	17	12	18	12	12	18	4	9	10	,	6				
23.	18	18	9	12	18	3	10								

also occur as a result of a twofold axis perpendicular to the plane, which is always present as subgroup in the required orientation in both $m 3 \mathrm{~m}$ and $6 / \mathrm{mmm}$). Reasoning along these lines 28 cases of β-restrictions are found to exist. They are displayed in Fig. 1. The six symbols on one line in the boxes represent $\beta_{11}, \beta_{22}, \beta_{33}, 2 \beta_{12}, 2 \beta_{23}, 2 \beta_{13}$, respectively. A dash indicates an unrestricted component; identical components are represented by symbols A or B occurring more than once on the same line, etc. All symmetry-equivalent cases of β restrictions are grouped in one box, the symmetry of the special position in question being stated at the right side of Fig. 1. The solid lines connecting the boxes indicate how, when starting with a spherical atom in a position of symmetry $m 3 m$ (top left) and an ellipsoid of revolution of symmetry $6 / \mathrm{mmm}$ (top right), all other cases of β-restrictions can be produced by a relaxation of symmetry demands. Identical β-restrictions occurring twice in this process are connected by chain-dotted lines. The numbers preceding the boxes refer to Tables 1 and 2.

Table 1 contains the 18 cases of β-restrictions that occur when only the first atom given by Vol. I of International Tables for a certain special position is considered. Table 2 presents, for all space groups (top to bottom in a column), and for every special position (left to right) of point symmetry higher than I an integer, which, by means of Table 1, indicates the nature of the β-restriction for the first atom of the equivalent set. All monoclinic space groups are entered twice: the first entry refers to the first setting (c axis unique); the second to the setting with the b axis as the unique axis. Similarly rhombohedral space groups occur twice: first with a rhombohedral unit cell, then with the alternative choice of hexagonal axes. Tetragonal and cubic space groups have all been processed with such a choice of unit cell as to have the origin on a centre of symmetry.

The (electronic) computation of this table proceeded as follows:

Space group information consisting of the multiplicity (M) and the coded coordinates of the equivalent general positions were fed into the machine. All symmetry-equivalent positions \mathbf{x}_{δ} were generated by the operation of a 3×3 rotation matrix R on a position \mathbf{x}, followed by the addition of a translation vector \mathbf{t}_{s} :

$$
\begin{equation*}
\mathbf{x}_{8}=R_{\delta} \mathbf{x}+\mathbf{t}_{\delta} \tag{1}
\end{equation*}
$$

(cf. Cruickshank, 1961), and subsequently all (M) , natrices R_{δ} and vectors \mathbf{t}_{8} were assembled. Next all R_{δ} and \mathbf{t}_{8} operated upon the coordinates of the first atom of a special position of multiplicity m. Naturally, of the M general positions thus generated, M / m coincided with the first atom,
and in this way the M / m transformations that left the special position invariant could be identified.

Now the $\beta_{i j}$ (constituting a second-order tensor) transform as follows:

$$
\begin{equation*}
\beta_{i}^{\prime \prime}=\sum_{k=1}^{3} \sum_{l=1}^{3} R_{i k} R_{j l} \beta_{k l}, \tag{2}
\end{equation*}
$$

the matrices R being identical with those in (1). An arbitrary symmetric tensor β was subsequently subjected to the M / m transformations (2), employing the M / m matrices R that left the atomic position invariant. The invariant tensor $\beta_{\text {lnv }}$ that displays the desired β-restrictions was then constructed by an application of Wigner's theorem (Wigner, 1931):

$$
\begin{equation*}
\left(\beta_{\mathrm{inv}}\right)_{i j}=\sum_{s=1}^{M / m}\left(\beta_{s}^{\prime}\right)_{i j}, \tag{3}
\end{equation*}
$$

stating that the invariant tensor can be obtained by a simple summation over the corresponding elements of the sym-
metry-equivalent, arbitrary tensors of the coinciding atoms*. Finally the nature of the invariant tensor was analyzed by a comparison with the 18 tensors of Table 1, a built-in check insuring that no other cases presented themselves.

References

Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem. Oxford: Pergamon Press.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

Levy, H. (1956). Acta Cryst. 9, 679.
Wigner, E. (1931). Gruppentheorie. Braunschweig.

* A trivial application of Wigner's theorem is the derivation of coordinates of special positions (first-order tensor components) by a summation over the coordinates of certain general positions.

Acta Cryst. (1966). 20, 150
Triple fault in face-centred cubic crystals. By Ryortiro Sato, Central Research Laboratory, Mitsubishi Metal Mining Co., Ltd, Omiya City, Saitama Prefecture, Japan
(Received 16 April 1965 and in revised form 17 July 1965)

The face-centred cubic structure [Fig. 1(a)] may contain various types of faults in stacking of the close-packed atomic layers (111). In Fig. 1(b), (c), and (d) three examples of such stacking faults are illustrated: the 'single (or intrinsic) fault', the 'double (or extrinsic) fault', and the 'triple fault'. The diffraction theories of the first two were given by Paterson

Fig.1. (a) The unit-layer stacking in the face-centred cubic structure. (b), (c), and (d) contain a single fault, a double fault, and a triple fault, respectively. The horizontal lines are the sections of the unit-layers.
(1952) and by Johnson (1963) and Warren (1963), respectively. The last one is dealt with in the present paper.

Fig.2. (a) The function E for $h-k=1 \bmod 3$ for various values of f. The curves for $h-k=-1 \bmod 3$ are obtained by replacing l by $-l$. (b) Change in peak position of E in (a) as a function of $f . \varphi=360^{\circ} \times l$.

